
Top Ten Terraform Trip-Ups



Who Am I?

Name: Ben Somerville Roberts

Job Title: Data Engineer Consultant

Employer: Advancing Analytics





Existing Infrastructure Irritation

It is relatively common to see Terraform or similar tools already in use by 

centralised Infrastructure teams.

How do ‘client’ Terraform configurations integrate?



Existing Infrastructure Irritation

Infrastructure Team
Data Team

Corporate 

Infrastructure 

Config

Networking

Virtual Networks Subnets

VNET Gateways

Load Balancers

DNS

Policies
Policy 

Assignments

Management 

Groups
Subscriptions Resource Groups

Service Principals

Lakehouse 

Config

Networking
Private 

Endpoints

Databricks

SQL DB

Key Vault



Existing Infrastructure Irritations

Potential Issues:

• Using Remote State to interact means that everything in the remote state is 

exposed

• ‘Their’ Terraform configuration may differ from ‘Yours’ and cause changes each 

time they do a deployment

• Is there a robust process to make sure that ‘Their’ changes aren’t going to break 

‘Yours’

• Especially as deployment cadence is likely to be different!





Pernicious Permissions

Q: If I want to carry out the following tasks in Terraform, what permission on the 

subscription do I need?

1) Create a Resource Group

2) Create an ADLS

3) Grant a user access to the ADLS via Azure RBAC

A: Owner!

Having this access gives Terraform control over all other Resource Groups in the Subscription!



Pernicious Permissions

Q: If I want to carry out the following tasks in Terraform, what permission on the 

subscription do I need?

1) Create an ADLS in an existing Resource Group that Terraform already has an Owner 

RBAC assignment on

2) Grant a user access to the ADLS via Azure RBAC

A: None!*

* If you enable “skip_provider_registration”



Pernicious Permissions

• By asking Terraform to do slightly less, we can drastically reduce the permissions 

it requires.

• Try to align the permissions given to Terraform to the scope of your project 

• Can separate Terraform configurations be used?

• One to create Resource Groups and assign RBAC roles.

• One to deploy the data platform

Does this reduce risk? Can the ‘privileged’ Terraform configuration be more 

restricted?





Azure AD Agony

Be aware of where your Terraform configuration might have hidden Azure AD 

Dependencies!



Azure AD Agony

• Anything that involves translating ‘friendly’ User/Group/Service Principal names 

into ID values is going to need Azure AD

• Use of AzureAD can be avoided by skipping checks and using ID values instead 

of display names.



Azure AD Agony

Using AzureAD can help reduce your reliance on hardcoded IDs





State Store SNAFU

State Files in Azure Storage Accounts with Azure AD Authentication

What you think happens:

Azure AD

1) Give me an Access Token!

2) Sure!

State Store



State Store SNAFU

What actually happens:

Azure AD

1) Give me an Access Token!

2) Sure!

State Store

3) Give me the Access Key – Here’s my token!

4) Sure!

5) Give me this file – Here’s my Access Key!

6) Sure!



State Store SNAFU

Why does this matter?

Source: https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-access-control . Viewed 13-MAR-2023

“Your storage account access keys are similar to a root password for your storage account”



State Store SNAFU

Solution:

• Use a Storage Account per Configuration

• E.g. Dev, Test, Prod





Tenuous Testing

Development Testing Production

✓ ✓ ✓project/

Promotion of ‘Normal’ code through environments:

Use of tools such as Git and Azure DevOps Pipelines ensure that the same 

code is deployed through the environments. 

There is limited potential for code to be changed during promotion. 



Tenuous Testing

p
ro

je
ct

/

modules/

dev/

test/

prod/

Development Testing Production

✓

✓

✓

Several online guides encourage the use of a “Folder Per Environment” for 

Terraform projects. Code has to be copy-pasted to promote it!



Tenuous Testing

Potential Problems:

• Changes to modules will immediately take effect across all environments. 

• Changes to the environments need to be copy-pasted into new folders

• Production code is never actually tested in it’s production form.



Tenuous Testing

Potential Solutions:

• Switch variable files (.tfvars) per environment, not whole configurations

• Use control flags to enable/disable modules per-environment where 

required





Provider Problems

Create Azure 

Databricks 

Workspace

Configure 

Databricks 

Workspace

What Terraform Providers do I need to create and configure a Databricks 

Workspace?



Provider Problems

Problem: 

• The Databricks Provider needs the Databricks Workspace info to instantiate

• Terraform instantiates providers on startup

• The Databricks Workspace details aren’t available until the AzureRM provider 

has created it

• If you put it into a module with its own Provider Config, you can’t use 

‘depends_on’
• This causes issues if you want to use Databricks Provider output in AzureRM resources



Provider Problems

Our Solution:

• Only run the Databricks provider once we’re certain the 

workspace is ready

• Also allows us to accommodate manual activities

• Use of Remote State to pass values between phases





Module Malarkey

Q: If you wanted to store the Storage Account Access Key 

as a Key Vault Secret, where would you put it?

project/

…/ modules/

key_vault

storage_account

virtual_network

…



Module Malarkey

project/

…/ modules/

key_vault

storage_account

virtual_network

kv_secrets

…

1)

2)

3)

Option 1 means that the Key Vault module has to 

‘know’ about the Storage Account

Option 2 means that the Storage Account has to 

‘know’ about the Key Vault

Both options 1 and 2 make it harder to reuse the 

modules, and make changes more difficult

Option 3 ensures separation of concerns between 

modules and facilitates reuse





Data Plane Disasters – The Scenario

management.azure.com

$(sa-name).blob.core.windows.net

$(vault-name).vault.azure.net

2) Create Container

Virtual Network



Data Plane Disasters – The Problem

Some aspects of the AzureRM Terraform Provider carry out operations that are 

against a resource-specific domain name.

If you have Private Networking configured*, will Terraform be able to access the 

resources that it has just created? 

• DNS

• Firewall

• NSG

• Routes

* As you should!



Data Plane Disasters – The Solution

Potential Solutions:

• Make everything managed by Terraform

• Separate anything “Data Plane” related into a separate Terraform configuration

• Accept failures during deployment:

• Deploy -> Fail -> Manual Tasks -> Deploy -> Success





DevOops Pipelines

Scenario: You’ve decided to be super-secure. Developers have no access to 

privileged credentials. All deployments are done via DevOps pipeline.

The build agent is accidentally rebooted half-way through a deployment.

What next? 



DevOops Pipelines

If the pipeline is simply restarted, it will fail:



DevOops Pipelines

The pipeline is now inoperable. Infrastructure is half-deployed, and you can’t force-

unlock it from a developer’s machine. 

It is 4:30 on a Friday, and everyone with the access you need has gone home. 



DevOops Pipelines

Potential Solutions:

• Build a ‘Force Unlock’ DevOps pipeline to unlock state files

• Procedural controls around deployments and availability of someone who can 

force-unlock it





Awful Artifacts

“So that I can audit what Terraform actions were planned, I will store 

the Terraform Plan as an Azure DevOps Pipeline Artifact!”



Awful Artifacts



Awful Artifacts

Potential Solutions:

• Restrict access in Azure DevOps / GitHub Workflows 

• Capture the ‘terraform show’ output

• Use a dedicated Terraform visualisation tool. 





Feedback!

https://sqlb.it/?10134

https://sqlb.it/?10134

	Default Section
	Slide 1
	Slide 2: Who Am I?

	Infrastructure Irritation
	Slide 3: 1) Existing Infrastructure Irritation
	Slide 4: Existing Infrastructure Irritation
	Slide 5: Existing Infrastructure Irritation
	Slide 6: Existing Infrastructure Irritations

	Pernicious Permissions
	Slide 7: 2) Pernicious Permissions
	Slide 8: Pernicious Permissions
	Slide 9: Pernicious Permissions
	Slide 10: Pernicious Permissions

	Active Directory
	Slide 11: 3) Azure AD Agony
	Slide 12: Azure AD Agony
	Slide 13: Azure AD Agony
	Slide 14: Azure AD Agony

	State Store
	Slide 15: 4) State Store SNAFU
	Slide 16: State Store SNAFU
	Slide 17: State Store SNAFU
	Slide 18: State Store SNAFU
	Slide 19: State Store SNAFU

	Tenuous Testing
	Slide 20: 5) Tenuous Testing
	Slide 21: Tenuous Testing
	Slide 22: Tenuous Testing
	Slide 23: Tenuous Testing
	Slide 24: Tenuous Testing

	Provider Problems
	Slide 25: 6) Provider Problems
	Slide 26: Provider Problems
	Slide 27: Provider Problems
	Slide 28: Provider Problems

	Module Malarkey
	Slide 29: 7) Module Malarkey
	Slide 30: Module Malarkey
	Slide 31: Module Malarkey

	Data Plane Disasters
	Slide 32: 8) Data Plane Disasters
	Slide 33: Data Plane Disasters – The Scenario
	Slide 34: Data Plane Disasters – The Problem
	Slide 35: Data Plane Disasters – The Solution

	DevOops Pipelines
	Slide 36: 9) DevOops Pipelines
	Slide 37: DevOops Pipelines
	Slide 38: DevOops Pipelines
	Slide 39: DevOops Pipelines
	Slide 40: DevOops Pipelines

	Awful Artifacts
	Slide 41: 10) Awful Artifacts
	Slide 42: Awful Artifacts
	Slide 43: Awful Artifacts
	Slide 44: Awful Artifacts

	End
	Slide 45: End.
	Slide 46: Feedback!


